
Bewegungsenergie – Aufgaben

Für die Bewegungsenergie (kinetische Energie) eines Körpers der Masse m und der Geschwindigkeit v gilt: $E_{kin} = \frac{1}{2}mv^2$

- 1) Ein Auto der Masse m=1t besitzt die Geschwindigkeit 10m/s. Berechne seine Bewegungsenergie.
- 2) Vergleiche die Bewegungsenergie eines Autos (m=1t) bei $30 \frac{km}{h}$ und $40 \frac{km}{h}$. Begründe hiermit, warum auch eine leichte Überschreitung der Geschwindigkeitsbegrenzung schon sehr gefährlich sein kann.
- 3) Damit ein Spielzeugauto ohne herab zu fallen durch einen Looping (r=25cm) kommt, muss es in B mindestens die Geschwindigkeit $3.5\frac{m}{s}$ besitzen
 - a) Aus welcher Höhe h muss das Auto im Punkt A starten, um diese Geschwindigkeit zu erreichen?
 - b) Wie schnell ist es dann im höchsten Punkt C des Loopings?

